Meda Inequality for Rearrangements of the Convolution on the Heisenberg Group and Some Applications
نویسندگان
چکیده
The Meda inequality for rearrangements of the convolution operator on the Heisenberg group Hn is proved. By using the Meda inequality, an O’Neil-type inequality for the convolution is obtained. As applications of these results, some sufficient and necessary conditions for the boundedness of the fractional maximal operator MΩ,α and fractional integral operator IΩ,α with rough kernels in the spaces Lp Hn are found. Finally, we give some comments on the extension of our results to the case of homogeneous groups.
منابع مشابه
On the generalization of Trapezoid Inequality for functions of two variables with bounded variation and applications
In this paper, a generalization of trapezoid inequality for functions of two independent variables with bounded variation and some applications are given.
متن کاملSubordination and Superordination Properties for Convolution Operator
In present paper a certain convolution operator of analytic functions is defined. Moreover, subordination and superordination- preserving properties for a class of analytic operators defined on the space of normalized analytic functions in the open unit disk is obtained. We also apply this to obtain sandwich results and generalizations of some known results.
متن کاملOn generalized Hermite-Hadamard inequality for generalized convex function
In this paper, a new inequality for generalized convex functions which is related to the left side of generalized Hermite-Hadamard type inequality is obtained. Some applications for some generalized special means are also given.
متن کاملSome Results on Convex Spectral Functions: I
In this paper, we give a fundamental convexity preserving for spectral functions. Indeed, we investigate infimal convolution, Moreau envelope and proximal average for convex spectral functions, and show that this properties are inherited from the properties of its corresponding convex function. This results have many applications in Applied Mathematics such as semi-definite programmings and eng...
متن کاملHermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates
In this paper we introduce the concept of geometrically quasiconvex functions on the co-ordinates and establish some Hermite-Hadamard type integral inequalities for functions defined on rectangles in the plane. Some inequalities for product of two geometrically quasiconvex functions on the co-ordinates are considered.
متن کامل